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Abstract
A theory of orientational relaxation for the inertial rotational Brownian motion
of a symmetric top molecule is developed using the Langevin equation rather
than the Fokker–Planck equation. The infinite hierarchy of differential-
recurrence relations for the orientational correlation functions for the relaxation
behaviour is derived by averaging the corresponding Euler–Langevin equations.
The solution of this hierarchy is obtained using matrix continued fractions
allowing the calculation of the correlation times and the spectra of the
orientational correlation functions for typical values of the model parameters.

PACS numbers: 05.40.Jc, 05.10.Gg, 83.10.Mj

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Models of the inertial rotational Brownian motion are frequently used in studying orientational
relaxation in liquids in order to compare spectra obtained by various probe techniques such as
dielectric relaxation, the dynamic Kerr effect, infrared absorption, Raman scattering, etc with
the corresponding theoretical spectra [1–3]. Hitherto the theoretical treatment of rotational
Brownian motion has been mainly based on the corresponding Fokker–Planck equation [4].
This equation is a partial differential equation for the time evolution of the orientational
distribution function of a molecule in phase space. It is derived by calculating the drift and
the diffusion coefficients from the inertial Euler–Langevin equation which governs the time
behaviour of the set of random variables describing the rotational Brownian motion of a
molecule in a fluid. The solution of the Fokker–Planck equation has been usually obtained by
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separating the variables. A comprehensive discussion of the Fokker–Planck equation method
and its applications to orientational relaxation in fluids is given, e.g., in [1, 3, 5–14].

An alternative approach to the problem has been given by Coffey [15, 16] and Coffey
et al [17–19]. They developed a method of solution of the Langevin equations for simple
models of the inertial rotation of linear rotators without recourse to the Fokker–Planck
equation. The key step in applying the method is first to convert by appropriate transformation
the Langevin equation into an equation for the quantity the statistical average of which is
desired. That equation is then averaged over its realizations in phase space. The transformed
Langevin equation contains not only the quantity the average of which is desired but also
the next higher order average and so on. It is thus the generating equation of a hierarchy of
averages which can be solved by a variety of methods. This procedure entirely eliminates
the excessive step in the theory of constructing and solving the corresponding Fokker–Planck
equation. The advantage in computational labour that the averaging method has over the
Fokker–Planck solution is considerable, neither the derivation of that equation nor knowledge
of the intricate transformations used to effect separation of the variables in it, and to solve
the resulting simultaneous recurrence relations is required. The advantages of the Langevin
equation method have been amply demonstrated in a recent paper [20]. There a theory of
orientational relaxation for the inertial rotational Brownian motion of a linear molecule (rotator
in space) has been developed, the infinite hierarchy of differential-recurrence relations for the
orientational correlation functions describing the relaxation behaviour of the system has been
derived and the solution of this hierarchy has been obtained in terms of continued fractions.
Here, the Langevin equation approach for rigid rotators proposed in [20] is generalized to the
orientational relaxation of an assembly of symmetrical top molecules undergoing rotational
Brownian motion in space.

2. Rotational Brownian motion of a symmetrical top molecule

We consider the rotational Brownian motion of a symmetric top molecule. In the molecular
coordinate system oxyz rigidly connected to the top, the angular velocity ω and the angular
momentum M are defined as [1]

ω = (ωx, ωy, ωz) = (ϑ̇, ϕ̇ sin ϑ, ψ̇ + ϕ̇ cos ϑ) (1)

and

M = (Iωx, Iωy, Izωz) (2)

where I and Iz are the components of the moment of inertia tensor, ϑ , ϕ and ψ are the Euler
angles (ϑ is the angle between the axes of symmetry of the molecule and the Z axes of the
laboratory coordinate system, ϕ is the azimuthal angle and ψ is the angle characterizing
rotation about the axis of symmetry). In the absence of external fields, the rotational Brownian
motion of the top is governed by the vector Euler–Langevin equation [1, 18]

d

dt
M(t) + ω(t) × M(t) + ζω(t) = λ(t) (3)

where ζω(t) and λ(t) are the frictional and white noise torques arising from the Brownian
motion of the surroundings, respectively. The white noise torque has the following properties:

λj (t) = 0 λj (t)λm(t ′) = 2kBT ζ δj,mδ(t − t ′) (j,m = x, y, z) (4)

where kB is the Boltzmann constant, T is the temperature, ζ is the friction (drag) tensor, δ(t)is
the Dirac-delta function, δj,m is Kronecker’s delta and the overbar means the statistical average
over an ensemble of rotators that all start at the instant t with the same sharp values of the



Langevin equation method for the rotational Brownian motion and orientational relaxation in liquids 4949

angular velocity and the orientation. The λj (t) must also satisfy Isserlis’s theorem [19] for
centred Gaussian random variables, namely for 2n λ’s

λj (t1)λj (t2) · · · λj (t2n) = λ1λ2 · · · λ2n =
∑ ∏

kp< ks

λkp
λks

(5)

where the sum is taken over all distinct products of expectation value pairs, each of which is
formed by selecting n pairs of time intervals from 2n time points and for 2n + 1 λ’s

λj (t1)λj (t2) · · · λj (t2n+1) = 0. (6)

We proceed by noting that equation (3) rewritten for the vector components in the
molecular frame becomes

I ω̇x(t) = −ωy(t)(Izωz(t) − Iωy(t) cot ϑ) − ζωx(t) + λx(t) (7)

I ω̇y(t) = ωx(t)(Izωz(t) − Iωy(t) cot ϑ) − ζωy(t) + λy(t) (8)

Izω̇z(t) = −ζzωz(t) + λz(t). (9)

Equations (7)–(9) combined with

ϑ̇(t) = ωx(t) ϕ̇(t) = ωy(t)/ sin ϑ(t) ψ̇(t) = ωz(t) − ωy(t) cot ϑ(t) (10)

(which follow from the definition of the angular velocity components equation (1)) constitute
a system of non-linear stochastic differential equations. In order to proceed, we shall use the
Stratonovich definition [21] of the average of equations (7)–(9). Thus, it is unnecessary to
transform the Langevin equations (7)–(9) to Itô equations; moreover, one can apply the usual
rules of calculus (e.g., [22]).

As far as the majority of applications is concerned, the quantities of interest are the
orientational equilibrium correlation functions (CFs) Cl(t) for the Legendre polynomials
Pl[cos ϑ(t)] defined as

Cl(t) = 〈Pl[cos ϑ(0)]Pl[cos ϑ(t)]〉 (11)

(the angular brackets denote the equilibrium ensemble averages). These averages characterize
the orientational relaxation in liquids. Having determined the correlation function Cl(t), one
can also evaluate the corresponding orientational correlation time τ l defined as the area under
the normalized correlation function Cl(t)/Cl(0) [3], namely

τl = 1

Cl(0)

∫ ∞

0
Cl(t) dt . (12)

We shall show below how the first- and the second-orderequilibrium orientational CFs (namely
C1(t) and C2(t)) can be calculated in the context of the Langevin equation approach (these CFs
are used for the interpretation of dielectric and infrared absorption and Raman and Rayleigh
scattering measurements) [2].

In order to calculate the Cl(t), we introduce the functions

f
l,m
n,k (t) = P

|m|
l [cos ϑ(t)]sm

n,k[ωx(t), ωy(t), ωz(t)] (13)

where P
|m|
l (z) are the associated Legendre functions [23] and the functions sm

n,k(ωx, ωy, ωz)

(l, n, k = 0, 1, 2, . . . ; −l � m � l) are expressed as finite series of products of Hermite
polynomials Hn(z) [23] in the components ωx, ωy and ωz of the angular velocity, namely

s2m−M
n,k (ωx, ωy, ωz) = Hk(ηzωz)

n∑
q=0

r2m−M(n, q)

q!(n − q)!
H2n−2q+M−εm

(ηωx)H2q+εm
(ηωy). (14)
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Here η = √
I/(2kBT ), ηz = √

Iz/(2kBT ), εm = 0 for m � 0, εm = 1 for m < 0, M = 0 or 1
and the coefficients r2m+M(n, q) of the finite series are determined by the recurrence relations

r2m(n, q) =
(

n − q +
1

2

)(
1 − 2q + 1

2m − 1

)
r2m−1(n, q) + (n − q)

(2q + 1)

2m − 1
r2m−1(n, q + 1)

(15)

r2m+1(n, q) =
(

1 +
q

m

)
r2m(n, q) − q

m
r2m(n, q − 1) (16)

r−2m(n, q) = (n − q)

[(
1 − 2q + 2

2m − 1

)
r−(2m−1)(n, q) +

2q + 3

2m − 1
r−(2m−1)(n, q + 1)

]
(17)

r−(2m+1)(n, q) =
(

1 +
2q + 1

2m

)
r−2m(n, q) − q

2m

(
2 − 1

n − q + 1

)
r−2m(n, q − 1) (18)

with r0(n, q) = r±1(n, q) = 1 and m � 0. The above recurrence relations and the orthogonality
of the Hermite polynomials guaranty that the functions sm

n,k(ωx, ωy, ωz) are orthogonal, namely∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
sm
n,k(ωx, ωy, ωz)s

m′
n′,k′(ωx, ωy, ωz) e−η2(ω2

x+ω2
y)−η2

zω
2
z dωx dωy dωz ∼ δn,n′δm,m′δk,k′

and that they form a complete set in angular velocity space. It is obvious from the definition of
equation (13) that f l,0

0,0(t) = Pl[cos ϑ(t)]. We remark that in the present paper,we are interested
in orientational CFs (11), which are independent of the azimuthal angle ϕ, therefore, this angle
does not appear in equation (13); in the general case, one can take into account the dependence
on the angle ϕ by introducing the factor eimϕ in equation (13).

We desire equations for the averaged values of f
l,m
n,k (t) over its realizations in phase space

(here configuration—angular velocity space). This is accomplished by evaluating (following
the appropriate transformation of the variables in equations (7)–(9) and subsequent use of
Isserlis’s theorem)

d

dt
f

l,m
n,k (t)

= lim
τ→0

P
|m|
l [cos ϑ(t + τ )]sm

n,k[ωx(t + τ ), ωy(t + τ ), ωz(t + τ )] − P
|m|
l (cos ϑ)sm

n,k(ωx, ωy, ωz)

τ

(19)

where

ωx(t + τ ) = ωx − ζ

I

∫ t+τ

t

ωx(t
′) dt ′

−
∫ t+τ

t

ωy(t
′)

[
Iz

I
ωz(t

′) − ωy(t
′) cot ϑ(t ′)

]
dt ′ +

1

I

∫ t+τ

t

λx(t
′) dt ′ (20)

ωy(t + τ ) = ωy − ζ

I

∫ t+τ

t

ωy(t
′) dt ′

+
∫ t+τ

t

ωx(t
′)

[
Iz

I
ωz(t

′) − ωy(t
′) cot ϑ(t ′)

]
dt ′ +

1

I

∫ t+τ

t

λy(t
′) dt ′ (21)

ωz(t + τ ) = ωz − ζ

Iz

∫ t+τ

t

ωz(t
′) dt ′ +

1

Iz

∫ t+τ

t

λz(t
′) dt ′ (22)

are integral forms of equations (7)–(9). We remark that the time τ is assumed to be of such
short duration that the angular velocities do not significantly alter during τ neither does any
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external conservative torque. Nevertheless τ is supposed sufficiently long that the chance that
the rapidly fluctuating stochastic torque λ(t) takes on a given value at time t + τ is independent
of the value which the torque possessed at time t. We further remark that ϑ,ωx , ωy and ωz and
ϑ(t), ωx(t), ωy(t) and ωz(t) in equation (19) have different meanings, namely, ϑ(t), ωx(t),
ωy(t) and ωz(t) are stochastic variables (processes) while ϑ,ωx , ωy and ωz are the sharp values
at time t (recall that the time τ is infinitesimally small). Instead of using different symbols
for the two quantities, we have distinguished the sharp values at time t from the stochastic
variables by deleting the time argument as in [19].

Thus by evaluating the right-hand side of equation (19) explicitly, we can derive the
differential-recurrence relations (recurring in the three numbers, namely m, n, k) for the

moments f
l,m
n,k (the derivation is given in appendix A):

η
d

dt
f

l,0
n,k = −[2nβ ′ + kβ ′

z/B]f l,0
n,k +

1

2
f

l,1
n,k + 2f

l,1
n−1,k (23)

η
d

dt
f

l,±(2m−M)
n,k = −[(2n + M)β ′ + kβ ′

z/B]f l,±(2m−M)
n,k + f

l,±(2m+1−M)
n−1+M,k

+
1

4
f

l,±(2m+1−M)

n+M,k − (1 − δ±(2m−M),−1)(l + 2m − M)(l − 2m + 1 + M)

×
[
(n + m)f

l,±(2m−1−M)
n−1+M,k +

(n − m + 1 + M)

4
f

l,±(2m−1−M)
n+M,k

]

∓ (2m − M)
√

B

(
1

2
f

l,∓(2m−M)

n,k+1 + kf
l,∓(2m−M)

n,k−1

)
. (24)

Here m > 0, β ′ = ηζ/I , β ′
z = ηζz/I and B = Iz/I . For linear molecules (Iz = 0, β ′

z = 0),

equations (23) and (24) yield the results of [20]. All the quantities f
l,m
n,k in the three number

recurrence relations (23) and (24) are functions of the sharp values ϑ,ωx, ωy and ωz, which
are themselves random variables with the probability density function W(ϑ,ωx , ωy, ωz, t).
Therefore, in order to obtain equations for the moments governing the relaxation dynamics of
the system, we must also average equations (23) and (24) over W [19]. However, if a system is
in equilibrium as in the present problem all such averages are either constant or zero indicating
that one must first construct from equations (23) and (24) a set of differential-recurrence
equations for the appropriate equilibrium CFs [19, 20].

3. Evaluation of C̃1

Following [20], one may also readily derive differential-recurrence equations for the

equilibrium CF for the first Legendre polynomial (l = 1), namely c
1,m
n,k (t) = 〈

cos ϑ(0)f
1,m
n,k (t)

〉
(so that c

1,0
0,0(t) ≡ C1(t)) by multiplying equations (23) and (24) by cos ϑ(0) and by averaging

the equations so obtained over the equilibrium distribution function W0 at the instant t = 0.
These equations can be written as a system of algebraic recurrence relations in the frequency
domain using Laplace transformation, namely

[ηs + 2nβ ′ + kβ ′
z/B]c̃1,0

n,k = ηc
1,0
0,0(0)δn+k,0 + 1

2 c̃
1,1
n,k + 2c̃

1,1
n−1,k (25)

[ηs + (2n + 1)β ′ + kβ ′
z/B]c̃1,1

n,k = − 1
2 (n + 1)c̃

1,0
n+1,k − 2(n + 1)c̃

1,0
n,k − 1

2

√
B
(
c̃

1,−1
n,k+1 + 2kc̃

1,−1
n,k−1

)
(26)

[ηs + (2n + 1)β ′ + kβ ′
z/B]c̃1,−1

n,k = 1
2

√
B
(
c̃

1,1
n,k+1 + 2kc̃

1,1
n,k−1

)
(27)
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where c̃(s) = L{c(t)} = ∫ ∞
0 e−st c(t) dt . Here, we note that all the c

1,0
n,k(0) vanish with the

exception of n + k = 0, namely c
1,0
0,0(0) = 1/3 (this result follows from the orthogonality

property of the associated Legendre functions [25]). Equations (25)–(27) can be reduced
to equations (3.18a)–(3.18d) of Morita [12] (obtained via the Fokker–Planck equation) by
introducing new functions An,k, Bn,k and Cn,k (in Morita’s notation), namely

An,k = (−1)n+k

n!24n(2k)!!η2nηk
z

c̃
1,0
n,k

{
Bn,k

Cn,k

}
= (−1)n+k

(n + 1)!24n+2 (2k)!!η2n+1ηk
z

{
c̃

1,1
n,k

c̃
1,−1
n,k

}
.

In order to solve the hierarchy of recurrence equations (25)–(27), we introduce a
supercolumn vector Cn(t) comprising three subvectors:

Cn(t) =

 c1,0

n−1(t)

c1,1
n−1(t)

c1,−1
n−1 (t)


 c1,m

n (t) =




c
1,m
n,0 (t)

c
1,m
n−1,1(t)

...

c
1,m
0,n (t)


 . (28)

The subvector c1,m
n (t) has dimension n + 1. The three index recurrence equations (25)–(27)

for c
1,m
n,k (t) can then be transformed into the matrix three-term differential-recurrence equation

η
d

dt
Cn(t) = Q−

n Cn−1(t) + QnCn(t) + Q+
nCn+1(t) (n � 1) (29)

where C0(t) = 0,

Q−
n =

( 0 q−
n 0

0 0 −p−
n

0 p−
n 0

)

Q+
n =

( 0 0 0
q+

n 0 −p+
n

0 p+
n 0

)

Qn =
( q0

n In/2 0
2(rn − In) q1

n 0
0 0 q1

n

)

and

q−
n = 2




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
0 0 · · · 0




n×(n−1)

(30)

q+
n = −1

2




n 0 · · · 0 0
0 n − 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




n×(n+1)

(31)

p−
n =

√
B




0 · · · 0 0
1 · · · 0 0
...

. . .
...

...

0 · · · n − 2 0
0 · · · 0 n − 1




n×(n−1)

(32)
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p+
n =

√
B

2




0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1




n×(n+1)

(33)

rn = −




n − 1 0 · · · 0
0 n − 2 · · · 0
...

...
. . .

...

0 0 · · · 0




n×n

(34)

qM
n =




f M(n − 1, 0) 0 · · · 0
0 f M(n − 2, 1) · · · 0
...

...
. . .

...

0 0 · · · f M(0, n − 1)




n×n

. (35)

Here f M(n, k) = −(2n + M)β ′ − kβ ′
z/B and In is the unit matrix which has dimension n × n.

The initial conditions are

C1(0) =
( 1/3

0
0

)
and Cn(0) = 0 for all n � 2.

On taking the Laplace transform of equation (29), we have the matrix three-term recurrence
relation

(ηsI3n − Qn)C̃n(s) − Q+
nC̃n+1(s) − Q−

n C̃n−1(s) = δn,1ηC1(0) (n � 1). (36)

The exact solution, for the Laplace transform C̃1(s), is then given by the matrix continued
fraction [19]

C̃1(s) = η
I3

ηsI3 − Q1 − Q+
1

I6

ηsI6 − Q2 − Q+
2

I9

ηsI9 − Q3
. . .

Q−
3

Q−
2

C1(0) (37)

where the fraction lines denote matrix inversion. Having determined the spectrum
C̃1(iω) = c̃

1,0
0,0(iω) from equation (37), one can also evaluate the orientational correlation

time τ1 = C̃1(0)/C1(0) (equation (12) for n = 1) and the normalized complex susceptibility
χ̂(ω) = χ̂ ′(ω) − iχ̂ ′′(ω). This is given by linear response theory as [21]

χ̂(ω) = χ(ω)

χ ′(0)
= 1 − iω

c̃
1,0
0,0(iω)

c
1,0
0,0(0)

(38)

where χ ′(0) = Nµ2/3kBT is the static susceptibility, N is the number of dipoles per unit
volume and µ is the dipole moment of a molecule.

For linear (Iz = 0) and spherical top (I = Iz) molecules, the results of numerical calculations
based on equation (37) for linear (Iz = 0) and spherical top (I = Iz) molecules were compared
with those of Sack [6] (Sack obtained the solutions in terms of ordinary continued fractions).
For linear molecules this is equation (27) of [20] and for spherical tops Sack’s continued
fraction solution [6] is (in our notation)
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C̃1(s) = η/3

sη +
1

sη + β ′ +
1

2(sη + 2β ′)
+

(3 − 1/2)/2

sη + 2β ′ +
2

sη + 3β ′ +
1

3(sη + 4β ′)
+

(5 − 1/3)/2

sη + 4β ′ + · · ·
(39)

(equation (39) is derived in appendix B). The numerical calculation indicates that the
matrix equation (37) and ordinary continued fraction solutions, equation (27) of [20] and
equation (39), yield the same results.

4. Evaluation of C̃l for an arbitrary l

In like manner we can derive differential-recurrence equations for the equilibrium CF

c
l,m
n,k (t) = 〈

Pl[cos ϑ(0)]f l,m
n,k (t)

〉
so that c

l,0
0,0(t) ≡ Cl(t). This is accomplished by multiplying

equations (23) and (24) by Pl[cos ϑ(0)] and averaging the equations so obtained over the
equilibrium distribution function W0 at the instant t = 0. In order to evaluate the lth-order
equilibrium orientation correlation function Cl(t), the 2l + 1 independent equations (23) and
(24) must be considered. Hence, the solution can be given in terms of matrix continued
fractions. In order to solve the hierarchy of moment equations so obtained, we introduce the
supercolumn vector Cn(t) comprising 2l + 1 subvectors

Cn(t) =




cl,0
n−1(t)

cl,1
n−1(t)

cl,−1
n−1 (t)

...

cl,l
n−1(t)




cl,m
n (t) =




c
l,m
n,0(t)

c
l,m
n−1,1(t)

...

c
l,m
0,n (t)


 . (40)

Then the hierarchy of equations can be transformed into the matrix three-term differential-
recurrence equation (29), where Qn, Q+

n and Q−
n are matrices with elements to be determined

from equations (23) and (24). The initial conditions are given by the supercolumn vector

C1(0) =




1/(2l + 1)

0

...

0


 and Cn(0) = 0 for all n � 2.

The exact solution for the Laplace transform C̃1(s) is similar to that given by equation (37).
An explicit solution for l = 2 is now presented as an example.

By multiplying equations (23) and (24) by P2[cos ϑ(0)] and by averaging the equations
so obtained over the equilibrium distribution function W0 at the instant t = 0, we have
for l = 2

[ηs + 2nβ ′ + kβ ′
z/B]c̃2,0

n,k = ηc
2,0
0,0(0)δn+k,0 + 1

2 c̃
2,1
n,k + 2c̃

2,1
n−1,k (41)

[ηs + (2n + 1)β ′ + kβ ′
z/B]c̃2,1

n,k = − 3
2 (n + 1)c̃

2,0
n+1,k − 6(n + 1)c̃

2,0
n,k

+ 1
4 c̃

2,2
n+1,k + c̃

2,2
n,k − 1

2

√
B
(
c̃

2,−1
n,k+1 + 2kc̃

2,−1
n,k−1

)
(42)
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[ηs + (2n + 1)β ′ + kβ ′
z/B]c̃2,−1

n,k = 1
4 c̃

2,−2
n+1,k + c̃

2,−2
n,k + 1

2

√
B
(
c̃

2,1
n,k+1 + 2kc̃

2,1
n,k−1

)
(43)

[ηs + 2nβ ′ + kβ ′
z/B]c̃2,2

n,k = −nc̃
2,1
n,k − 4(n + 1)c̃

2,1
n−1,k −

√
B
(
c̃

2,−2
n,k+1 + 2kc̃

2,−2
n,k−1

)
(44)

[ηs + 2nβ ′ + kβ ′
z/B]c̃2,−2

n,k = −nc̃
2,−1
n,k − 4(n + 1)c̃

2,−1
n−1,k +

√
B
(
c̃

2,2
n,k+1 + 2kc̃

2,2
n,k−1

)
(45)

where c
2,m
n,k (t) = 〈

P2[cos ϑ(0)]f 2,m
n,k (t)

〉
so that c

2,0
0,0(t) ≡ C2(t).

In order to solve the hierarchy of moment equations so obtained, we introduce a
supercolumn vector Cn(t) comprising five subvectors c2,m

n−1(t), equation (40), with m = 0,
±1, ±2. Then the hierarchy of equations for c

2,m
n,k (t) equations (41)–(45) can be transformed

into the matrix three-term differential-recurrence equation (29), where

Q−
n =




0 q−
n 0 0 0

0 0 −p−
n 0 0

0 p−
n 0 0 0

0 v−
n 0 0 −2p−

n

0 0 v−
n 2p−

n 0




Q+
n =




0 0 0 0 0
3q+

n 0 −p+
n v+

n 0
0 p+

n 0 0 v+
n

0 0 0 0 −2p+
n

0 0 0 2p+
n 0




Qn =




q0
n In/2 0 0 0

6(rn − In) q1
n 0 In 0

0 0 q1
n 0 In

0 rn 0 q0
n 0

0 0 rn 0 q0
n


 .

Here the submatrices p±
n , q±

n , rn and qM
n are given by equations (30)–(35) and

v−
n = −4




n 0 · · · 0
0 n − 1 · · · 0
...

...
. . .

...

0 0 · · · 2
0 0 · · · 0




n×(n−1)

v+
n = 1

4




1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




n×(n+1)

.

The exact solution for the Laplace transform C̃1(s) is then given by the matrix continued
fraction, namely

C̃1(s) = η
I5

ηsI5 − Q1 − Q+
1

I10

ηsI10 − Q2 − Q+
2

I15

ηsI15 − Q3
. . .

Q−
3

Q−
2

C1(0)] (46)
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Figure 1. 3D-plot of log10{Re[C̃1]} as a function of log10(ωη) and log10(β
′) for spherical top

molecules (I = Iz) and β ′ = β ′
z.

with initial conditions

C1(0) =




1/5
0
0
0
0


 and Cn(0) = 0 for all n � 2.

As an example the results of numerical calculations for linear (Iz = 0) molecules based on
the above matrix continued fraction solution have been compared with those of [20] presented
in terms of ordinary continued fractions, namely

C̃2(s) = η/5

ηs +
3

ηs + β ′ +
5

ηs + 2β ′ − b0

ηs + a1 − b1

ηs + a2 − b2

ηs + a3 − . . .

(47)

where

an = (2n + 1)β ′ +
4n + 3

2nβ ′ + ηs
+

4n + 5

2(n + 1)β ′ + ηs

and

bn = 16(n + 1)(n + 2)

[2(n + 1)β ′ + ηs]2
.

The numerical calculations show that both matrix and ordinary continued fraction solutions
yield the same results. In order to illustrate this, the 3D-plots of log10{Re[C̃1]} and of
log10{Re[C̃2]} versus log10(ωη) and log10(β

′) for spherical top molecules (I = Iz) and
isotropic diffusion (β ′ = β ′

z) are shown in figures 1 and 2, respectively.

5. Discussion of the results

The matrix continued fraction solutions we have obtained are very useful in computation
(various algorithms for calculating matrix continued fractions are discussed in [22], ch 9).
The calculations have shown that for β ′, β ′

z > 0.005, the matrix continued fraction involved
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Figure 2. 3D-plot of log10{Re[C̃2]} as a function of log10(ωη) and log10(β
′) for spherical top

molecules (I = Iz) and β ′ = β ′
z.

converges very rapidly, thus 10–60 downward iterations in evaluating these matrix continued
fractions are enough to arrive at not less than six significant digits in the majority of cases
(with decreasing β ′ and β ′

z, a number of iterations increases).
For very small β ′, β ′

z (<0.001), the numerical procedure may become unstable. However,
in this very low damping limit and ωβ ′ > 10, the C̃l(iω) are very close to those of the free
rotation model C̃FR

l (iω) (β ′, β ′
z ≡ 0) [24], namely

C̃l(iω) ≈ C̃FR
l (iω)

= − i

ω
CFR

l (∞) + 4η
√

1 + b

l∑
m=1

m−1
∫ 1

0

∣∣dl
0,m[cos−1(x)]

∣∣2F [
i
ηω

m

√
1 + bx2

]
dx

(48)

where b = I/Iz − 1,

CFR
l (∞) =

√
1 + b

∫ 1

0

P 2
l (x)√

1 + bx2
dx F(z) = z{1 − √

πz exp(z2)[1 − erf(z)]}.

erf(z) is the error function [25] and the dl
M,M ′(ϑ) are functions familiar in the theory of

angular momentum; explicit equations for dl
M,M ′(ϑ) are given, e.g., in [25], p 78. One has,

for example,

dl
0,0[cos−1(x)] = Pl(x) d1

0,±1[cos−1(x)] = ±
√

1 − x2

√
2

d2
0,±1[cos−1(x)] = ±

√
3

2
x
√

1 − x2 d2
0,±2[cos−1(x)] = 1

2

√
3

2
(1 − x2) etc.

In the opposite (high damping) limit, β ′ → ∞, the form of the spectrum C̃l(iω) becomes
Lorentzian (see figures 1 and 2) and coincides with that of the noninertial rotational diffusion
Debye (model) [3], namely

C̃D
l (iω) = Cl(0)

iω + l(l + 1)/(2τD)
(49)

where τD = ηβ ′ = ζ/(2kBT ) is the (Debye) relaxation time.
The matrix continued fraction solution we have obtained is not only useful for numerical

calculations, but also fruitful in analysis using symbolic calculations in the MATHEMATICA
program. For example, in the high damping limit (β ′ � 1) and isotropic diffusion (β ′

z = β ′),
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we obtain the following Taylor series expansion for the orientational relaxation times
τ1 = C̃1(0)/C1(0) and τ2 = C̃2(0)/C2(0) (equation (12) for n = 1, 2) of the symmetric top:

τ1

τD

= 1 +
1 + B + B2

1 + B
γ − 2(2 + 5B + 4B2 + B3 + 3B5)

3(1 + B)2(2 + B)
γ 2 + O(γ 3). (50)

and

3τ2

τD

= 1 +
5 + 5B + B2

1 + B
γ − 2(32 + 80B + 76B2 + 46B3 + 12B4 + 3B5)

3(1 + B)2(2 + B)
γ 2 + O(γ 3). (51)

Here γ = 1/(2β ′2) is the inertial (Sack’s [6]) parameter. For spherical tops (B = 1) and linear
rotators (B = 0), equations (50) and (51) reduce to known results, respectively [1],

τ1

τD

= 1 +
3

2
γ − 5

6
γ 2 + O(γ 3) (52)

3τ2

τD

= 1 +
11

2
γ − 83

6
γ 2 + O(γ 3) (53)

and
τ1

τD

= 1 + γ − 2

3
γ 2 + O(γ 3) (54)

3τ2

τD

= 1 + 5γ − 32

3
γ 2 + O(γ 3). (55)

Results of our calculations of the spectra C̃1(iω) and C̃2(iω) and the orientational
relaxation times τ 1 and τ 2 show that these quantities depend on the frictional anisotropy
(β ′/β ′

z) and the shape parameter B = Iz/I and agree in all respects with those obtained
using the Fokker–Planck equation [1, 10]. As far as comparison with experimental data is
concerned, the Langevin–Fokker–Planck model is suitable only for the explanation of the
rotational motion of small molecules (such as N2O, CF4, and so on) in liquids [3, 11]. Here,
the model reasonably describes experimental data on infrared absorption, Raman scattering,
nuclear magnetic relaxation, etc (see, e.g., [3, 9, 11], where a detailed comparison with
experiments is given); however, it is not applicable [2] to liquids comprised larger molecules,
where the rotational motion is more hindered and has a librational character. The failure of the
Langevin–Fokker–Planck model as well as all other inertia corrected Debye-type models [3]
to account for the high-frequency molecular librations in neat liquids even though they explain
the return to transparency at high frequencies is to be expected [2] in view of the assumption
made in the theory that all electrical interactions between dipoles may be neglected.

To conclude we have derived an infinite hierarchy of differential-recurrenceequations (23)
and (24) for the statistical moments governing the inertial Brownian motion of a symmetric
top molecule freely rotating in space by using the Langevin equation method. We have
also obtained exact analytical solutions (in terms of matrix continued fractions) of this
hierarchy for the one-sided Fourier transforms of the first, C1(t), and the second, C2(t), order
equilibrium orientational correlation functions. The problem at hand provides a convenient
benchmark solution for the method as it may also be solved using other methods (cf Sack’s
equation (39)). The method of solution of orientational relaxation problems, which we have
proposed, is quite general because it is based on the concept of the equation of motion of an
observable which in turn is based on the dynamical (Langevin) theory [19] of the Brownian
motion. The attractive feature of the dynamical method is that it allows one to compute directly
from the dynamical equations of motion the spectra of the equilibrium CFs C̃l(iω) taking
account of the effect of molecular inertia on orientational relaxation in liquids. The major
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advantage that the dynamical (Langevin) method has over the Fokker–Planck equation is that
it avoids both the derivation of this equation for the distribution function W(ϑ,ωx, ωy, ωz, t)

in phase space, which for the problem in question is [12]

∂W

∂t
+ ωx

∂W

∂ϑ
+

(
ωy cot ϑ − Iz

I
ωz

)(
ωy

∂W

∂ωx

− ωx

∂W

∂ωy

)
= ζ

I

∂

∂ωx

(
ωxW +

kBT

I

∂W

∂ωx

)

+
ζ

I

∂

∂ωy

(
ωyW +

kBT

I

∂W

∂ωy

)
+

ζz

Iz

∂

∂ωz

(
ωzW +

kBT

Iz

∂W

∂ωz

)
and also the complex mathematical manipulations associated with the separation of variables
in that equation, which combine to obscure the physics underlying the problem. The method
developed is essential for the solution of problems involving spatial rotation in a potential as
recurrence relation involving more than two numbers will always occur.
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Appendix A. Derivation of differential-recurrence equations for fl,m
n,k (t)

In order to derive the hierarchy of equations for average values of f
l,m
n,k (t), we first note that

d

dt
f

l,m
n,k (t) = P

|m|
l

d

dt
sm
n,k + sm

n,k

d

dt
P

|m|
l .

For arbitrary l and m = 0, we can evaluate the two terms on the right-hand side of the above
equation as follows:

s0
n,k[ωx(t), ωy(t), ωz(t)]

d

dt
Pl[cos ϑ(t)]

= ωx(t)s
0
n,k[ωx(t), ωy(t), ωz(t)]P

1
l [cos ϑ(t)]

= 1

2η
P 1

l H z
k

n∑
q=0

(
Hx

2n−2q+1 + 4(n − q)Hx
2n−2q−1

)
H

y

2q

q!(n − q)!
= 1

2η
P 1

l

(
s1
n,k + 4s1

n−1,k

)
(A1)

and

Pl[cos ϑ(t)]
d

dt
s0
n,k[ωx(t), ωy(t), ωz(t)] = Pl[cos ϑ(t)]

n∑
q=0

4η

q!(n − q)!

×
[
(n − q)Hx

2n−2q−1(t)H
y

2q(t)H
z
k (t)ω̇x(t) + qHx

2n−2q(t)H
y

2q−1(t)H
z
k (t)ω̇y(t)

+
ηzk

2η
Hx

2n−2q(t)H
y

2q(t)H
z
k−1(t)ω̇z(t)

]

= Pl[cos ϑ(t)]
n∑

q=0

4η

q!(n − q)!

{
(n − q)Hx

2n−2q−1(t)H
y

2q(t)

×
[
−ωy(t)

(
Iz

I
ωz(t) − ωy(t) cot ϑ

)
− ζ

I
ωx(t) +

λx(t)

I

]
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+ qHx
2n−2q(t)H

y

2q−1(t)

[
ωx(t)

(
Iz

I
ωz(t) − ωy(t) cot ϑ

)
− ζ

I
ωy(t) +

λy(t)

I

]

+
ηzk

2η
Hx

2n−2q(t)H
y

2q(t)H
z
k−1(t)

[
−ζz

Iz

ωz(t) +
λz(t)

Iz

]}
= −(2nβ + kβz)Pls

0
n,k

(A2)

where H
j
n (t) ≡ Hn[ηωj (t)](j = x, y, z) and ω̇x(t), ω̇y(t) and ω̇z(t) are given by

equations (7)–(9). In order to simplify equations (A1) and (A2), we have used the identities
[23]

∂

∂ϑ
Pl(cos ϑ) = P 1

l (cos ϑ) (A3)

d

dx
Hn(x) = 2nHn−1(x) (A4)

Hn+1(x) = 2xHn(x) − 2nHn−1(x) (A5)

and the relations from Stratonovich calculus [19, 20]

λi(t)E[ϑ(t), ωj (t), ωk(t)]Hn[ηωi(t)] = ζn

η
E(ϑ,ωj , ωk)Hn−1(ηωi) (A6)

where E is an arbitrary function and i, j, k = x, y, z (i �= j �= k). Equation (A6) follows from
Isserlis’s theorem and is given in appendices A–C of [19]. On combining equations (A1) and
(A2), one can obtain equation (23).

In like manner, we have for m �= 0

s2m−M
n,k [ωx(t), ωy(t), ωz(t)]

d

dt
P

|2m−M |
l [cos ϑ(t)]

= ωx(t)s
2m−M
n,k [ωx(t), ωy(t), ωz(t)]

∂

∂ϑ
P

|2m−M |
l [cos ϑ(t)]

= 1

4η

[
P

|2m−M |+1
l (cos ϑ) − (l + |2m − M|)(l + 1 − |2m− M|)P |2m−M |−1

l (cos ϑ)
]

× Hz
k

n∑
q=0

r2m−M(n, q)

q!(n − q)!

[
Hx

2n−2q+M−εm+1

+ 2(2n − 2q + M − εm)Hx
2n−2q+M−εm−1

]
H

y

2q+εm
(A7)

and

P
|2m−M |
l [cos ϑ(t)]

d

dt
s2m−M
n,k [ωx(t), ωy(t), ωz(t)] = −[(2n + M)β + kβz]P

|2m−M |
l s2m−M

n,k

+
n∑

q=0

(n − q)(2 + εm/(q + 1))r2m−M(n, q + 1) − (2n − 2q + M − εm)r2m−M(n, q)

q!(n − q)!

×
{

1

4η|2m − M|
[
P

|2m−M |+1
l (cos ϑ) + (l + |2m − M|)(l + 1 − |2m − M|)P |2m−M |−1

l (cos ϑ)
]

×Hx
2n−2q+M−1−εm

(
H

y

2q+2+εm
+ 2(2q + 1 + εm)H

y

2q+εm

)
Hz

k

+
Iz

I

1

2ηz

P
|2m−M |
l H x

2n−2q+M−1−εm
H

y

2q+1+εm

(
Hz

k+1 + 2kHz
k−1

)}
. (A8)
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Here equations (A3)–(A6) and the following relations of the associated Legendre functions
have been used [23]:

2
∂

∂ϑ
Pm

l = Pm+1
l − (l + m)(l − m + 1)Pm−1

l

2m cotϑPm
l = −Pm+1

l − (l + m)(l − m + 1)Pm−1
l

and

(2l + 1) sin ϑPm
l = Pm+1

l−1 − Pm+1
l+1 = (l − m + 1)(l − m + 2)Pm−1

l+1 − (l + m − 1)(l + m)Pm−1
l−1 .

Noting equations (A7) and (A8), we have equations (23) and (24).

Appendix B. Sack’s continued fraction solution for sphere

Sack [6] obtained a solution for the dielectric (first-order) response in terms of a scalar
continued fraction (his equation (3.19)). Unfortunately, no details of the derivation have been
given; moreover, a misprint in his equation exists. This has led to some confusion in the
literature as Sack’s solution was used as printed, see, e.g., [1, 9]. Here, a detailed derivation
of Sack’s continued fraction solution is given. In the notation of Sack [6], the dynamics of an
assembly of spherical top molecules is governed by the recurrence equations:

iω′a0 + 2b1 = iω′ (B1)

(iω′ + n)an + (n + 2)bn+1 − γ bn−1 = 0 (B2)[
iω′ + n +

2γ

(n + 3)(iω′ + n + 1)

]
bn +

(
n + 2 − 2

n + 3

)
an+1 − γ an−1 = 0 (B3)

where γ = 1/(2β ′2) and ω′ = Iω/ζ . One can formally solve equations (B1)–(B3) for a0 as

a0 = iω′

iω′ +
2

iω′ + 1 +
γ

2(iω′ + 2)

[
γ −

(
3 − 1

2

)
a2

a0

] (B4)

where the infinite continued fraction a2/a0 must be evaluated from the following recurrence
equation:

an

an−2
=

γ 2

iω′ + n − 1 +
2γ

(n + 2)(iω′ + n)

iω′ + n +
γ

(
n + 1 − 2

n + 2

)

iω′ + n − 1 +
2γ /(n + 2)

iω′ + n

+
(n + 2)

[
γ −

(
n + 3 − 2

n + 4

)
an+2

an

]

iω′ + n + 1 +
2γ /(n + 4)

iω′ + n + 2

(B5)

(n � 2). One may see by inspection that the continued fraction (B5) differs from that given
by Sack [6]. However, equation (B5) can be rearranged as follows:

Zn = γ n

iω′ + n − 1 +
2γ /(n + 2)

iω′ + n
+

γ n(n + 3)/(n + 2)

iω′ + n + Zn+2

(B6)

where Zn is defined as

Zn = n

iω′ + n − 1 +
2γ

(n + 2)(iω′ + n)

[
γ −

(
n + 1 − 2

n + 2

)
an

an−2

]
. (B7)
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Thus, we obtain from equations (B4) and (B6)

a0 = iω′

iω′ + Z2
=

iω′

iω′ +
2γ

1 + iω′ +
γ

2(2 + iω′)
+

(3 − 1/2)γ

2 + iω′ +
4γ

3 + iω′ +
γ

3(4 + iω′)
+

(5 − 1/3)γ

4 + iω′ +
6γ

5 + iω′ +
γ

4(6 + iω′)
+ · · ·

(B8)

that is Sack’s result ([6], equation (3.19)) with the corrected misprint. On noting that
C̃1(iω) = a0/(3iω), equation (B8) yields equation (39).
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